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1 The Area Problem

In this last part of the course, we are interested in calculating areas, and in
particular finding a fast way of doing so! (notice the similarity with what we
did for derivatives). For example, given the graph of a function f , how can we
calculate the area of region A in the picture below?

1A/Handouts/Area.png

(In the problem in the next section, we will have f(x) = x3, a = 0, b = 1)
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Now this seems like a pretty hard task, but remember the general principle
mentioned several times this semester:

General Principle: Whenever you don’t know how to calculate something,
first calculate something you know, and then take a limit!

Here, we’ll see this principle in action! What we know is to calculate areas
of rectangles (the formula is easy, it’s just length × width!), so our strategy will
be to compute areas of rectangles, and then take some sort of a limit.

To do this, we first divide the interval [a, b] into n even pieces. Think of it
just like cutting a cake, except that your cake is an interval! So we get something
like in the following picture:

1A/Handouts/Partition.png

And notice that the every piece has length b−a
n (because we divided [a, b]

into n even pieces). Now notice that in the picture above, there are some weird
symbols like x0, x1 or even xi, xn. They are your best friends, so don’t be afraid
of them! They just say that we divided the interval [a, b] into n mini-intervals,
namely [x0, x1], [x1, x2], [x2, x3], and so on, until [xn−1, xn]. And we also have
x0 = a, xn = b. If you’re driving a car from a to b, think of the xi as pitstops.
Finally, don’t be scared about the term xi (I was when I was a freshman :) ). It
just means that the general term is xi. This is similar to when we say f(x) = x2,
imagine how tedious it would be, instead of writing x2, to say that we have a
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function f such that f(1) = 1, f(2) = 4, f(3) = 9, etc. It is easier just to say
f(x) = x2. Here it is the same thing! Instead of writing x0, x1, x2, · · · , we just
write xi. It’s the same idea, and nothing more!

Now, once we divided [a, b] up into n mini-intervals [xi, xi+1], we need to
cook up rectangles which approximate the area A. There are many, many ways
of doing that, but two of them are very important for this course:

1A/Handouts/Ln.png

1A/Handouts/Rn.png
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The first one is the left-hand-sum Ln. On each interval [xi, xi+1], you con-
sider the rectangle of height f(xi). For example, your first rectangle will have
height f(x0), your second rectangle height f(x1), and your nth rectangle will
have height f(xn−1). Basically, you’ll start at x0 and end at xn+1.

The second one is similar, and called the right-hand-sum Rn. On each inter-
val [xi, xi+1], you consider the rectangle of height f(xi+1). For example, your
first rectangle will have height f(x1), your second rectangle height f(x2), and
your nth rectangle will have height f(xn). Basically, you’ll start at x1 and end
at xn.

The following picture shows that the two approaches above are not exactly
the same (the two pictures above might be misleading in this sense):

1A/Handouts/Comparison.png
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Again, to summarize, the Left-Hand-Sum essentially starts at x0 and ends at
xn−1, and the Right-Hand-Sum starts at x1 and ends at xn. You can think of
it in the following way, if you want: Imagine you are taking a class with n + 1
homework assignments, labeled homework 0 up to homework n and only n of
them count. There are many ways of turning in your homework, but the two
basic strategies are: Be productive, and start with homework 0, and stop at
homework n − 1 because you only have to turn in n assignments. This is the
same as the left-hand-sum. Or take it easy at first, and start with homework 1,
and work all the way through homework n. This is the right-hand-sum.

Now, for each approach (left-hand-sum and right-hand-sum), we’d like to
compute the sum of the areas of each rectangle (hence the name left-hand-
sum). Again, notice that in this case, each rectangle has width b−a

n (notice
that this doesn’t depend on the rectangle used! On Wednesday, you’ll do a
different sum where the width depends on the rectangle). And for the length,
for the left-hand-sum, the ith rectangle has height f(xi) (i is between 0 and
n−1). And for the right-hand-sum, the ith rectangle has height f(xi+1) (again,
i is between 0 and n− 1). Finally, using the formula Area = Width × Height,
we can explicitly compute Ln an Rn, namely:
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Ln =

(
b− a

n

)
f(x0) +

(
b− a

n

)
f(x1) +

(
b− a

n

)
f(x2) + · · ·+

(
b− a

n

)
f(xn−1)

=

(
b− a

n

)
(f(x0) + f(x1) + · · ·+ f(xn−1))

Rn =

(
b− a

n

)
f(x1) +

(
b− a

n

)
f(x2) +

(
b− a

n

)
f(x3) + · · ·+

(
b− a

n

)
f(xn)

=

(
b− a

n

)
(f(x1) + f(x2) + · · ·+ f(xn−1) + f(xn))

Awesome!!! We found a good formula for Ln and Rn! The only thing we
still need to do is to take limits, namely:

A = lim
n→∞

Ln = lim
n→∞

Rn

It is NOT OBVIOUS that both approaches give the same limit, but in
most cases it’s true, and we’ll see very soon for which cases the above holds.

We summarize our approach into a method for calculating the area under
the graph of a function f from a to b:

Method:

• Calculate Rn =
(
b−a
n

)
(f(x1) + f(x2) + · · ·+ f(xn−1) + f(xn))

• Take limn→∞Rn

Three remarks are in order. First, DO NOT memorize this formula! Under-
stand what is going on, and it will be very easy for you to re-derive it! Second,
using the right-hand-sum is enough for this problem, you don’t have to cal-
culate both Rn and Ln. But sometimes, you might be asked: Compute this
area using Left-Hand-Sums! Finally, notice that one thing that simplified this
formula was that the width of the rectangles were all the same! Prof. Christ
will talk about the case where the widths are not the same on Wednesday!
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2 Sample Problems

After this looooooooooong discussion, we can finally move on to sample prob-
lems!

2.1 Sample Problem 1: Find the area under the graph of
f(x) = x3 from x = 0 to x = 1

.

All the work we did in the previous part greatly simplifies our task! Notice
that here f(x) = x3, a = 0, and b = 1. Now, as above, we divide [0, 1] into n
even mini-intervals, each of which has length 1

n .

Then, the next step is to find Rn, and we do this by first drawing a picture
exactly like above (included here for your convenience):

1A/Handouts/Rn.png

The only thing you would change is to indicate that x0 = 0 and xn = 1.
Now notice that we can explicitly calculate xi, taking into account that the

xi are evenly spaced in the interval [0, 1].
So we get: x0 = 0, x1 = x0 + 1

n = 1
n , x2 = x1 + 1

n = 1
n + 1

n = 2
n ,

x3 = x2 + 1
n = 2

n + 1
n = 3

n . By now you should have noticed the pattern! The
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general term is xi = i
n , and in particular xn = n

n = 1.

Now taking into account that the width of the rectangles are 1
n , we can

calculate Rn:

Rn =

(
1

n

)
(f(x1) + f(x2) + · · ·+ f(xn−1) + f(xn))

=

(
1

n

)(
(x1)3 + (x2)3 + · · ·+ (xi)

3 + · · ·+ (xn−1)3 + (xn)3
)

=

(
1

n

)((
1

n

)3

+

(
2

n

)3

+ · · ·+
(
i

n

)3

+

(
n− 1

n

)3

+
(n
n

)3)

=

(
1

n

)4 (
13 + 23 + · · ·+ i3 + · · · (n− 1)3 + n3

)
=

(
1

n

)4(
n2(n + 1)2

4

)
Rn =

(n + 1)2

4n2

Finally, we take limn→∞Rn = limn→∞
(n+1)2

4n2 = 1
4 .

So our desired area is A = 1
4 .

Note: Notice how we needed the formula for the sum of cubes here! Usually,
this formula will be given to you!

2.2 Find a formula for the area under the graph of f(x) =√
x from x = 1 to x = 3, but do not evaluate it!

This problem basically says: Find Rn but do not compute limn→∞Rn! The pic-
ture is basically the same as the picture above, except that now we are dealing
with the square root function, and furthermore we are considering x between 1
and 3.
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1A/Handouts/Square root.png

The strategy is again the same: Divide [1, 3] into n even pieces. Each has
length 3−1

n = 2
n .

Again, we can compute xi explicitly: x0 = 1, x1 = 1 + 2
n , x2 = 1 + 4

n ,
x3 = 1 + 6

n , and in general, xi = 1 + i
(
2
n

)
(because the length here is 2

n ).
So we get:

Rn =

(
2

n

)
(f(x1) + f(x2) + · · ·+ f(xn−1) + f(xn))

=

(
2

n

)(√
x1 +

√
x2 + · · ·+

√
xi + · · ·+√xn−1 +

√
xn

)
=

(
2

n

)(√
1 +

2

n
+

√
1 +

4

n
+ · · ·+

√
1 + i · 2

n
+ · · ·+

√
1 +

2(n− 1)

n
+
√

3

)
And finally A = limn→∞Rn, i.e. you take the above formula and let n go

to ∞

2.3 Determine a region whose area is equal to the gien
limit:

The limit here is:
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lim
n→∞

(
2

n

)((
5 +

2

n

)10

+

(
5 +

4

n

)10

+ · · ·+
(

5 +
2i

n

)10

+ · · ·+ (7)
10

)

You should immediately recognize this as limn→∞Rn. The important
parts to focus on are in bold. First of all, we learn that the width of the rectan-
gles in this sum is 2

n , and that the function in question is f(x) = x10, because
of the ’power-of-10’ term (f(x) = (x+5)10 would also work, but your endpoints
are different). Also, the first term x1 is 5 + 2

n , so our guess is that a = 5 and
finally, the xn term is 7, so we get b = 7.

Hence, the above limit represents the area of the region A under the function
f(x) = x10 from a = 5 to b = 7. You could draw a picture if you want to. It
would look somehow like this:

1A/Handouts/x10.png
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